Isogeometric analysis and proper orthogonal decomposition for parabolic problems

نویسندگان

  • Shengfeng Zhu
  • Luca Dedè
  • Alfio Quarteroni
چکیده

We investigate the combination of Isogeometric Analysis (IGA) and proper orthogonal decomposition (POD) based on the Galerkin method for model order reduction of linear parabolic partial differential equations. For the proposed fully discrete scheme, the associated numerical error features three components due to spatial discretization by IGA, time discertization with the θ -scheme, and eigenvalue truncation by POD. First, we prove a priori error estimates of the spatial IGA semi-discrete scheme. Then, we show stability and prove a priori error estimates of the space-time discrete scheme and the fully discrete IGA-θ -POD Galerkin scheme. Numerical tests are provided to show efficiency and accuracy of NURBS-based IGA for model order reduction in comparison with standard finite element-based POD techniques. Mathematics Subject Classification (2000) 35K20 · 65M12 · 65M15 · 65M60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation

Isogeometric Analysis (IGA) is used in combination with proper orthogonal decomposition (POD) for model order reduction of the time parameterized acoustic wave equations. We propose a fully discrete IGA-Newmark-POD approximation and we analyze the associated numerical error, which features three components due to spatial discretization by IGA, time discretization with the Newmark scheme, and mo...

متن کامل

Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes

In this work we provide a combination of isogeometric analysis with reduced order modelling techniques, based on proper orthogonal decomposition, to guarantee computational reduction for the numerical model, and with free-form deformation, for versatile geometrical parametrization. We apply it to computational fluid dynamics problems considering a Stokes flow model. The proposed reduced order m...

متن کامل

Proper Orthogonal Decomposition for Reduced Basis Feedback Controllers for Parabolic Equations

In this paper, we present a discussion of the proper orthogonal decomposition (POD) as applied to simulation and feedback control of the one dimensional heat equation. We provide two examples of input collections to which the POD process is applied. First, we apply POD directly to the nite element basis of linear B-splines. Next we additionally include time snapshots. We show that although the ...

متن کامل

POD a-posteriori error estimates for linear-quadratic optimal control problems

The main focus of this paper is on an a-posteriori analysis for the method of proper orthogonal decomposition (POD) applied to optimal control problems governed by parabolic and elliptic PDEs. Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the POD model, is from the (unknown) exact one. Numerical examples illustrate the realization of the p...

متن کامل

POD-Based Bicriterial Optimal Control by the Reference Point Method

In the present paper a bicriterial optimal control problem governed by a parabolic partial differential equation (PDE) and bilateral control constraints is considered. For the numerical optimization the reference point method is utilized. The PDE is discretized by a Galerkin approximation utilizing the method of proper orthogonal decomposition (POD). POD is a powerful approach to derive reduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2017